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I. .INTRODUCTION

This memorandum describes a method for computing the

solution to the boundary value problem consisting of a plane

sound wave incident on an infinite-length right circular
cylinder and a section of a right circular cylindrical shell

concentric with the cylinder. The problem is formulated so

that the section of the cylindrical shell shields the circular

cylinder from the incident plane wave. The frequency of the

incident wave, the surface impedance of the cylinder and shell,

the relative spacing of the cylinder and shell and the angular

extent of the shell are parameters of the solution. This

boundary value problem has been considered because it repre-

sents a tractable formulation for investigating the sound field

in the vicinity of a sonar transducer, produced by a source,

such as the ship's screws, after this sound field has been

modified by a baffle interposed between the source and the

transducer. The cylinder represents the transducer and the

section of a cylindrical shell represents the baffle.

The material in this memorandum is concerned primarily

with the development of a formal solution to the problem as

formulated above. Justification for applying this mathematical

model to the baffle-transducer complex and a determination of

the range of parameters which can be usefully considered will

be considered in a subsequent memorandum.
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IiL FORMULATION OF THE PROBLEM

Consider the problem, shown schematically in Figure 1, of

a plane sound wave incident on a right circular cylinder of in-

finite length and radius a, and a section of a right circular

cylindrical shell, also of infinite length, located at radius b,
where b > a. The shell, which will be called the baffle in the
following, has an angular width 2(r - p) and is positioned with

respect to the incident wave so that synmnetry in the angle e is

preserved. (The case in which symmetry in the angle e is not

preserved is discussed in Section V.) The thickness of the
baffle is assumed to be negligible. It is desired to obtain a

solution to the wave equation which describes the total sound

field throughout all of space external to the cylinder for the
incident plane wave and the scattered and diffracted waves

arising from specified boundary conditions on the surface of

the cylinder at radius a and on the inner and outer surface of

the baffle at radius b.

As is well known, the wave equation in cylindrical co-
ordinates for cases in which the solution is not a function of

axial position* is

6r2 r ar 2 __ 1 6t 2

where p is the sound pressure, r and e are the independent co-
ordinates, t is the time and c is the speed of sound. The

general solution to this equation, which can be obtained by

assuming that the solution has the form of a product of functions
of each of the independent coordinates and the time, is, for a

*In this boundary value problem'the baffle and cylinder are as-
sumed to be of infinite length in order that the end effects
may be neglected, The solution is therefore independent of axial
position.
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sinusoidal time dependence,

p =1 [AnJn(kr) + BnNn(kr)] cos ne e-iwt (2)

n=0

where An and Bn are undetermined constants, Jn(kr) and Nn(kr)

are the Bessel and Neumann functions respectively, (i.e., the

two independent solutions to Bessel's equation for integral

orders 2 ), Lo is the angular frequency of the incident wave,

k = 2rA/X is the wave number and X is the wavelength of the in-

cident wave. In order to obtain a better physical insight in-

to the meaning of this solution, it can be rewritten in the

form
3

00

p [CnHn )(kr) + D H 12)(kr)] cos no e-iwt (3)

n=0

where H (kr) = J + i Nn (kr) is the Hankel function ofwhr n n nr

the first kind and represents a cylindrical wave propagating radi-

ally outward; and Hn( 2 ) (kr) = Jn (kr) - i N (kr) is the Hankel func-alyouwrd nd Hn n

tion of the second kind and represents a cylindrical wave

propagating radially inward3 , corresponding to reflected and

incident cylindrical waves respectively. The radial particle

velocity is obtained from the pressure according to the relation

See e.g., P. M. Morse, Vibration and Sound, McGraw-Hill, New
York, 1948, p. 298.

2 Ibid. pp. 188, 196.
3 P. M. Morse and H. Feshbach, Methods of Theoretical Physics,
McGraw-Hill, New York, 1953, p. 1371.

3
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ipck v = ap (4)6•r

where v is the radial particle velocity, i =/-l, p is the density
of the medium and the remaining terms have been previously de-

fined.

Before proceeding to an evaluation of the undetermined
constants so that the specified boundary conditions are satisfied,
it is of interest to recall briefly several fundamental identities
and to discuss some notation pertinent to representing boundary
conditions on the baffle. Consider a function f(e) in the form
of equations (2) and (3).

f(e)=Z An(r) cos ne, O< I 1<c

n=0 (5)

-0 0< e6<,-

The function f(e) can be written as a single expression valid
for all 0 by expanding it in a Fourier series. The Fourier
series expansion of f(e) results in the identity

f(e) > cp - 7 Aj(r) {}cos no, 0<101<r (6)

n=O j=0

where E0 =, En 2 when n #0, and

{nj}-sinIn- .i p + sin (n +j)c
S- j I cn +4 j)
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Here the Fourier coefficients have been determined in the usual
4 .manner, i.e.,

2 S f(e) cos ne de'
T0

which in this case reduces to

A [ Z A.(r) cos j] cos ne de -1CP Z Aj (r)

j=0 j =0

As indicated in eq. (6) this expansion is valid for all e.

The expression for f(e) given in eq. (6) may also be ob-

tained as the product

f(B) = g(e)h(e), (7)

where

g(o) = 1, 0< e <•

= 0, •<I <e

and
CO

h(e) = z An(r) cos ne, 0<II <TT.

n=0

4 See e.g,, D. Jackson, Fourier Series and 0Othogonal,.Pol-?nomials
Mathematical Association of America, 1941, p. 7.

5
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The Fourier expansion of g(e) is

g(e) = C- si ncp cos ne (8)
'7' 7-r ncp

n=O

The equivalent of eq. (6) for the situation when

f(e) = 0, 0< e <c

03(9)

= Z Bn(r) cos no, CP<18e<T

n=O

is

00r E A rO
f(o) = n(r) -- .p Z Bj (r) jcos ne. (10)

n=O j =0

Equation (10) can also be obtained as the product

f(G) = g(E)h(O), (11)

where

g(o) = 0, 0< e0<

=1, eP 8T

and

6
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cc

h(G) = 7. Bn(r) cos ne, O<1e0<r.

n=0

"It is convenient to develop the solution for two different

geometric regions. Let Region 1 be defined by a<r<b, 0<181<n,

and let Region 2 be defined by r>b, 0<101<7. In Region 2 the

pressure P 2 can be written as the sum of the incident plane'wave

plus a general set of cylindrical waves traveling radially out-

ward. Thus

P2'(r,) = 0 [Eni nn(kr) + A nH n(1)(kr)cos n8 e-iWt

n=O (12)

where the first term under the summation is the expression, in

cylindrical coordinates, of a plane wave 5 traveling as shown in

Figure 1, E0 = 1, E = 2 when n # 0, and i = v71. In Region 1o n
the pressure p1 can be written as the sum of a general set of

cylindrical waves which are propagating radially inward and a set

which are propagating radially outward as given by eq. (3).

Thus

pl(r,B) X3 [BnHn (1)(kr)+ CnHn(2)(kr)]cos n e-iWt.

n=0

(13)

At the boundary r = a, i.e. on the surface of the cylinder, either

pl(a,e) or the radial particle (or medium) velocity vl(a,e) is

a prescribed function. On the closed portion of the boundary on

the baffle at r = b, i.e., for cp<jeI<TT, either pl(b,e) or vl(b,e)

is a prescribed function, while on the open portion of the

5P. M. Morse, loc. cit., p. 347.

7
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boundary at r = b, iLe. for 0<`11<cp, both the pressure pl(b,e),

and the radial particle velocity vl(b,O), must equal the pressure

P2 (b,), and velocity v2 (b,O), respectively, in order to es-

tablish continuity in the pressure and radial particle velocity

between Regions I and 2.

For the pressure and velocity in Region 1 the boundary

conditions at the radius r = b can be written as

pl(b,G) {pl(b,O) - [pl(b,0)]O<Kgj<c0} + [P 2 (b,e)]O<jei<co"

(14)

vl(b,G) =f Vl(b,O) - [vl(b,e)]O<8ie<p } + [v 2 (b,0)]O<1 e1<C

(15).

where the brackets, [], denote a Fourier expansion as given by

eq. (6), and the quantities without brackets are applicable for

all 0. Braces,{} , are used to indicate the terms which repre-

sent a Fourier expansion as given by eq. (10). The corresponding

equations at the radius r = b for the pressure and velocity in

Region 2 are

P2 (b,e) ={P 2 (b,e) - [P 2 (b,G)] 0 < 1 0 <• } + [pl(b,e)]o<IeI<P (16)

v 2 (b,e) {v 2 (b,O) - [v 2 (b,e)] 0 < 1 01 <• } + [vl(b,e)] 0 <j 0 j<c0 (17)

The constants An, Bn and Cn will be evaluated for a specific

set of boundary conditions in Section III, corresponding to a

physical situation in which the outside of the baffle is perfectly

rigid, i.e., v2 (b,e) = 0 for cp<IeI<n; the inside of the baffle

is soft, i.e., pl(b,e) = 0 for cp<Ie01r; and the cylinder is rigid,

i.e., vl(a,e) 0 0. In Section IV the solution will be evaluated

for more general, non-zero values at the boundaries.

8
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III. EVALUATION OF THE UNDETERMINED CONSTANTS

The undetermined constants, An, Bn, and Cn must be evalu-

ated in order to satisfy the boundary conditions specified on

the cylinder and both faces of the baffle, The case to be con-

sidered in this section is that of a rigid outer baffle surface,

a soft inner baffle surface, and a rigid cylinder surface. A

formal statement of these boundary conditions is:

v2(r,O) = vl(r,e) , 0<I 0 e<cp (18)

v2 re r=b r =b

- 0 , cp'lel<n

p1 r8 r=b r--b-lrB P2 (r,O) 0< 0 <CP (19)

0 , <1 01<,r

vl(r,e) = 0 , 1<01e<rT (20)
r =a

The solutions for Regions I and 2 can be separated into Bessel

and Neumann functions. Equations (12) and (13)* then become

= [LEninJn(kr) + AnJn(kr) + iAnN (kr cos nO (21)

n=0

*The time component e-iWt of the solution will henceforth be
suppressed.

9
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and

+ ( +D)J (kr) + i(GC Din) Nn(kr)] cos no (22)

n=O

Without loss of generality, eq. (22) can be rewritten as

"= [EnJn(kr) + iFnNn(kr)] cos ne (23)
n=0

where Cn + Dn =En and (C -D) =F

n n nn n n

Consider the boundary condition given in eq. (20). The

radial particle velocity for Region 1 is obtain by using eq. (4).

ipckv = k[EnJn(ka) + iFnNn(ka)] cos (ne) =- 0

r=a n=0 (24)

where the primes indicate differentiation with respect to the

argument kr and the Bessel and Neumann functions have been evalu-

ated at r = a. Equation (24) implies that

Jn (ka)

Fn = i En Nn(ka) (25)
NA'(ka)

Thus, the solution in Region 1 can be written as

CO J ' (ka) 1
p, E[ N (kr)n cos no (26)PEn nkr) N'(ka) n

n=0 n

Consider now the substitution of the boundary conditions,

equations (18) and (19), into the identities given in equations

10
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(14) and (17). These equations reduce to

pl(b,e) [P 2 (b,8)]10<11<CP (27)

and

v 2 (b,e) [vl(b,e)] 0 <1 8 1 <"0 (28)

The identities expressed in equations (14) and (17) were chosen
in this case because the quantities

{Pl(b'O) - [Pl(b'8)]3<Iei< } and {v 2 (be)- [v2(b,-)1O<jOj<cP

were specified as boundary conditions. Equations (14) and (17)

therefore lead to a direct determination of A and E If, for

example, the velocity were specified on the inside of the baffle

and the pressure were specified on the outside of the baffle,

then equations (15) and (16) would be more advantageous in

solving for the undetermined constants A and E
n 'n

The quantities

[p 2 (be)]O<e <q) and [Vl(b,0)]0<jelP

are determined according to eq. (6) using the forms of the

solution for Regions 1 and 2 given in 6quations (21) and (26).
Equations (27) and (28) then become

1(k ijJEbJn(ka) Nn(kbco ne = E-

En [jj1,(kb) N,(ka) b O CP iji (kb)

n=0 n=0 j=0

(29)

+ A.J.(kb) + iA. N (kb)~ Y CosR n1
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and

n Ej [J! (kb) N- ( N!(kb) cos n=
TTjLj~ N! (ka) 1pl

n=0 j=0

(30)
I1

o [�iE J'(kb) + AJn'(kb) + iAn k cosne

n=0

Equations (29) and (30) are valid for all 8 and must therefore
be satisfied term by term. Consequently,

En Jn (kb) - Nn(ka) Nn (kb)

2n cp ii (b)+ A.J.(kb) + iA.N. (kb)fV<j (31)
j=0

and

1n% J'k)- J3 (ka) 1r2-- pZ Ej J!(kb) .. .N!(kb =

SN! (ka) .i
j=O J

(32)

EinJn'(kb) + AnJ'(kb) + iANn' (kb)

Equation (32) is now solved for An to yield

12
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IEn Ji(ka) N!(kb)

A - E [J! (kb) - (ka) t.
An J'(kb) + iNn(kb) 2 T N!(ka) J j

- E inj' (kb) (33)
n n J

This.-value of An is substituted into eq. (31) to yield

F J'n(ka) 1
En [Jn(kb) - Nn (kb) =

En " J.(kb) + iN (kb) E

2T-- _ J!(kb) + iN!(kb) 2T
j =0 j 3 =0

fJ'(kb) NJ (ka) N l kb {I} - EjiJJ!(kb) f]j' (34)

Ný (ka)

The order of summation of eq. (34) can be interchanged and the

equation rearranged as follows:

E n[J ( b) J N(ka) 1 ( bE FJ(kb)J n N (kb) =n Ln Nn(ka) nl

_n__Jka .J.(kb) +iNj~kb)

2--7 CI 0 [Et' Jý (kb) N t'(kb) Z -.. -N[ (ka) N7 Jb! (kb) + iN! (kb) 2' t0
t=0 jk=0 )

E 
(35)

+n E iiJi(kb) -J Eij J (kb) + iN( n
2 TT z= NJ 3 J!(kb) + iN!(kb) j

j =0 33

13
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The summations over the index j involve known constants only (the

Bessel and Neumann functions) so that the index j can be summed

out. Equation (35) therefore can be written in the form

E4n- Et = In' (35a)

which is an infinite set of inhomogeneous equations relating the

E's to each other.

A qualitative examination of the functional forms of the

quantities an and Pn shows that the factors { j} and nj will

have a tendency to cause the major contribution to the sum on t

to arise for values of 4, in the vicinity of n. One would expect,

therefore, that it should be possible to obtain accurate numerical

values for the first N of the E's if the indices in the summation

(n and 4) in eq. (35a) are restricted to a finite number M > N.

If the indices are restricted in this manner, eq. (35a) becomes

a set of M inhomogeneous equations in M unknowns, which can be

evaluated numerically. The pressure can then be calculated from

eq, (26).. The number, N, of accurate E's required is determined

by the convergence rate of eq. (26). The number M of E's which

must be included in eq. (35) to obtain accurate values for the

first N of the E's is determined by the convergence effects

of the factors 1 } and {J} in computing the sums over the

index Z,

The qualitative aspects of obtaining numerical values for

the pressure described in the preceding paragraph have been ex-

amined quantitatively and have been found to be substantially

correct. The complete computational procedure as well as some

numerical results will be described in a subsequent memorandum.

14
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IV. GENERAL BOUNDARY CONDITIONS

In the previous section a solution to the baffle-cylinder

sound field was developed for the case of zero radial particle

velocity on the outside of the baffle and zero pressure on the

inside of the baffle. Solutions for more general boundary con-

ditions on the baffle can also be developed using a procedure

identical to that of Section III.

Expressions for the quantities pI, vl, P2, and v 2 on the

boundary r = b are given in equations (14), (15), (16) and (17).

In these equations the quantities in the braces 0 represent the

specified boundary conditions. Any combination of pressure and

radial particle velocity can be specified as boundary conditions

on the baffle. For example if the pressure on the outside of the

baffle is specified as some function P2 (0) and the radial particle

velocity on the inside of the baffle is specified as some function

VI(e) then equations (15) and (16) become

2O 1
vl(b,e) = J VI(e) cos ne de cos ne + [v2(b,O)0

n=0 (36)

and
CO TT

P2 (b,G) = X [Z S P2 (e) cos ne de] cos ne + [p (b,G)l

n=0
(37)

where the series represent the Fourier expansions of VI(e) and

P2 (0) respectively. Here equations (36) and (37) are analogous

to equations (27) and (28) of Section III. The procedure for

determining the unknown coefficients An and En is then identical

to that of the previous section.

15
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The solution for the problem using any other combination

of boundary conditions, e.g. pressure specified on both the

inside and outside of the baffle, is obtained by choosing the

appropriate pair of identities (equations (14) - (18)) and pro-

ceeding as in Section III.

16
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V. PLANE WAVES OBLIQUELY INCIDENT TO THE BAFFLE-CYLINDER

In Section III a solution was obtained for the boundary

value problem consisting of a plane wave normally incident on

the 'baffle-cylinder. (See Figure 1.) In this section the

solution will be obtained for the more-general case of a plane

wave incident on the baffle-cylinder at some angle 4 as shown

in Figure 2. The development of the solution for the oblique

incidence case closely follows the normal incidence case

presented in Section III. The expansion for the normally
6

incident wave in polar coordinates is

p Z EninJn(kr)cos ne

n=O

where the symbols are defined in previous sections. By a

simple coordinate transformation, the off-axis wave shown in

Figure 2 can be written as

z inj[kr cos nMcos no + sin n4sin no]p = En Jnkr

n=O

where * is the angle between the wave front normal and the

e = 0 axis. For the off-axis case, the solution is no longer

symmetric in 0; consequently, both sine and cosine terms must

be present in the Fourier expansion of the solution. 7 Thus

the forms of the solution in Regions 1 and 2 must be written

as

6 P.M. Morse, loc. cit. p. 347

7 See e.g. R. V. Churchill, Fourier Series and Boundary Value
Problems, McGraw-Hill Company, New York, 1941, Chapter IV.

17
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p, =E nJn(kr) + iF N n(kr)]cos nO

n=O

(38)

+ 7 [K J (kr) + iL Nn (kr)]sin nO
n n nf

n-- 0

and

[E inJ (kr)cos nii + An J (kr) + iA N (kr)]cos nO

(39)

+ 7 [i inJn(kr)sin n* + G J (kr) + iGnNn(kr)]sin nO.nt n n nnn

n=0

The evaluation of the constants A E, Fn, Gn, Kn, and Ln

follow the procedure outlined in Section III.

Consider the boundary conditions given by equations (18),

(19), and (20). Substitution of equations (38) and (39) into

(18), (19), and (20) and performing the operations indicated

in Section III yields

EnM nE= T 1 .: { • • i t.+ A.J (kb)+ iA N (kb)

L -0 (4 0 )

KM E n 4 ., 11n
K M n JEiJ(kb)sin L1 f G J (kb) + iGN,(kb)
n n 2TT

S-41)

18
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EinJ' (kb)cos ný + AnJ(kb) + iANn(kb) =--I ?f E M n
n n njn 2 TT

t,=0

(42)

and

E inj' (kb)sin ni + GnJn(kb) + iGnN(kb) = Z KM ,n n +- Gj KNM 7T

4=0

(43)

where

{tn}* sin -n ssin (t + n p

t-ncp +n cp

Jj(ka) - (ka)(k) n-i - n+l

Mn n NnI(ka) - Nnb(ka) Nn(kb)

n Jn (ka) - Jn+l(ka)

Mn Jn(kb) n-l(ka) J n+±(ka) N'(kb)1n N NnI -k Nn+I(a "n

and all other symbols are defined as in previous sections.

Equations (40) and (42), (41) and (43) can be combined to yield

equations similar to eq. (35), ioe.

cO
EnMn 2- -n ,R itcos t,ýDJ6(kb) -, RCJ"(kb)]

t,=0

(44)

+ n Z n I 2 { ý}{} RjM!Ej

j=0 t=O

19
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Kn~ M n P {n'} * {%i'~in t11[J,(kb) -R',Jjkb)]}'

(45)

ECO CO

+ -- a CP n c R j M K .

j=0 t=0

where

J (kb) + iN (kb)

3 j!(kb) + iN!(kb)
J J

Equations (44) and (45) can be solved in the same manner as

eq. (35) to yield values of En and Kn to complete the solution

for pl(r,O). For boundary conditions other than those given

in equations (18), (19), and (20) the procedure for the

treatment of more general boundary conditions given in Section

IV is employed.

The solution presented in this section will reduce to

the normal incidence case presented in Section III if the

angle 4 = 0 is substituted into equations (44) and (45).

Equation (44) then reduces to eq. (35) of Section III. Equa-

tion (45) reduces to an infinite set of homogeneous equations

in the unknown Kn which is satisfied only if K n=0, resulting

in a solution identical to that of Section III.

Complex incident sound fields can be considered using

the solution presented in this section. Assume several plane

waves are incident on the baffle-cylinder at angles of in-

cidence i The scalar wave equation (eq. 1) is a linear equa-

tion; hence, any linear combination of solutions to the wave

equation is itself a solution. Therefore the solution to the

complex sound field containing M different incident plane waves

can be written as

20
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Pl = I E mnEJn (kr) + iFmnNn (kr) cos nO

m=l n=0

(46)

+ L K -J (kr) + iL NN(kr)1 sin ne}

P2  f { mninj(kr)cos nim + A mnJ n(kr) + iAmnN (kr cos nO

m=l n=0
(47)

+ inJ(kr)sin n*m + GmnJn (kr) + iGmnNn (kr) sin nO

where am is an amplitude weighting function for the various

plane waves. Here it has been assumed that the various in-

cident waves have the same angular frequency. However the

solution given in equations (46) and (47) could easily be gen-

eralized to include incident plane waves of different frequencies.

21


